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SUMMARY

This paper reports on a study concerned with the numerical simulation of dough kneading that arises in
the food processing industry. The �ows considered are in a complex domain setting. Two dough mixers
running at various rotation speeds are studied; one with a single stirrer and the other with two stirrers.
Stirrers are �xed on the lid of the vessel and the motion is driven by the rotation of the outer vessel.
Two di�erent mixer orientations are considered, generating horizontal or vertical-rotating �ow �elds.
Three-dimensional numerical simulations are performed on the full �ow equations in a cylindrical polar
co-ordinates system, through a �nite-element, semi-implicit time stepping, Taylor–Galerkin pressure-
correction scheme. The results re�ect excellent agreement against the equivalent experimental �ndings.
The motivation for this work is to develop advanced technology to model the kneading of dough. The
ultimate target is to predict and adjust the design of dough mixers, so that optimal dough processing
may be achieved notably, with reference to local rate-of-work input. Copyright ? 2003 John Wiley &
Sons, Ltd.

1. INTRODUCTION

This article reports on a study concerned with the numerical simulation of dough-kneading
that occurs in food processing industry. Flow in a rotating cylinder is investigated when the
�uid is mixed in a cylinder with a stirrer. There has been a considerable amount of studies on
�ow between eccentric rotating cylinders as that is appropriate to journal bearings. Background
literature is heavily cited in the paper by Beris et al. [1], for which it is assumed that the
�uid inertia is negligible and the clearance gap is small compared to the radii of the cylinders.
However, in many practical applications, inertial e�ects are signi�cant. Some of the relevant
literature is cited below. Xue et al. [2] have simulated Newtonian and viscoelastic problems
in three-dimensional time-dependent �ow using an implicit �nite volume formulation. They
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focused on swirling �ows in a con�ned cylinder with a rotating bottom lid. The suitability of
di�erent constitutive models for viscoelastic �uids is also discussed. Atobe [3] has reported
chaotic motion of �uid particles in Stokes �ow between two counter-rotating eccentric cylin-
ders. Kim [4] has developed a mixed Galerkin technique with B-spline basis functions to
compute two-dimensional incompressible �ow between eccentric rotating cylinders. Dai et al.
[5] examined the e�ects of coupling the equations of motion and energy by allowing variation
in �uid viscosity with temperature, for �ow between eccentric, rotating cylinders. Christie
et al. [6] have analysed �ow of a slightly non-Newtonian �uid between eccentric rotating
cylinders. Prakash and Kokini [7–9] studied the shear-rate and velocity distribution in a model
mixer using laser-doppler anemometry (LDA). They observed high shear-rates in the region
near blades and the values ranged from 0 to 400 s−1. Based on these data, an equation to
predict shear-rate distribution in the model mixer was developed. Other researchers [10] have
reported mean shear-rates ranging from 10 to 104 s−1, in the mixer.
The present study is aimed at developing an algorithm to simulate the types of �ow which

are encountered in the food processing industry. In particular, those arising within the con-
text of stirring and kneading of dough-based materials. Finite element methods for incompre-
ssible viscous �ows have been implemented for dealing with non-Newtonian materials, under
transient and isothermal conditions within a three-dimensional cylindrical polar co-ordinate
system. The �uid material is driven by one or two stirrers, �xed to a lid that is placed upon a
cylindrical vessel. The stirrers may be positioned in concentric or eccentric arrangement with
respect to the axis of the vessel. As an alternative to conventional mixer protocol, the motion
is assumed to be driven by the rotation of the vessel, as opposed to the stirrer, to avoid
the complications arising from moving the stirrers through the mesh. Finally, we demonstrate
how the equivalence in driven-motion may be established. The rotation path of the stirrers is
about the center of the vessel. Both horizontal and vertical vessel orientations are considered to
accommodate di�erent types of stirring, as arise typically in biscuit or bread-producing processes.
The quality of the �nal product, depends on the right balance of mechanical energy within the
mixer. From the velocity pro�le, velocity gradients are estimated and then the local shear-rate
values are calculated. From these data, the local rate-of-work done and torque are computed.
The simulation procedure addresses the numerical solution of the fully three-dimensional

generalized Navier–Stokes equations for incompressible �ows. This involves a so-called Taylor
–Galerkin �nite element formulation, which applies a temporal discretization in a Taylor series
prior to a Galerkin spatial discretization. A semi-implicit treatment for di�usion is employed
to address linear stability constraints. Full details on this scheme have already been published
extensively in the References [11, 12]. The �ow is modelled as incompressible, via a pressure-
correction scheme. An inelastic model with shear-rate-dependent viscosity is incorporated,
though this is extended to consider viscoelastic �uids elsewhere [13, 14].

2. GOVERNING EQUATIONS AND NUMERICAL SCHEME

For Newtonian and incompressible isothermal �ow, the generalized momentum and continuity
equations may be expressed as

�Ut =∇ · (�∇U )− �U · ∇U −∇p+ �g (1)

∇ ·U =0 (2)
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where variables velocity (U ) and pressure (p) are de�ned over space and time with time
derivative represented as (Ut). Material properties are given via density (�) and viscosity (�).
The following characteristic scales are used for non-dimensionalization: length L, velocity V ,

time L=V , pressure �cV=L. We may de�ne the following dimensionless variables and di�erential
operators:

U ∗ =
U
V

; p∗=
L

�cV
p; t∗=

V
L

t; Z∗=
1
L
Z

�∗ =
1
�c

�; ∇∗=L∇;
D
Dt∗

=
L
V

D
Dt

where �c is a reference viscosity. Substitution of the above dimensionless variables and
di�erential operators into Equations (1) and (2) yields the non-dimensional Navier–Stokes
equations. Discarding * notation for brevity, such a system may be expressed in the follow-
ing form:

ReUt =∇ ·
(

�
�c

∇U
)
− ReU · ∇U −∇p+ F (3)

∇ ·U =0 (4)

Here, Re=�LV=�c, is the non-dimensional group called Reynolds number and the zero-shear-
rate viscosity (�0) is taken as the characteristic viscosity (�c). ‘F’ is the ratio of Reynolds to
Froude number which is de�ned as F =�L2g=�cV .
A semi-implicit time stepping procedure, namely, a Taylor–Galerkin=pressure-correction

�nite element scheme [11, 12] is employed to solve the governing equations relating to the
conservation of mass and momentum. The Taylor–Galerkin=pressure-correction scheme is a
fractional-step method derived through Taylor series expansions in time up to second-order
and a two-step predictor–corrector scheme is employed. Governing equations are discretized
spatially via a Galerkin �nite element method. The �ow domain is divided into a tetra-
hedral mesh. Piecewise-linear interpolation is invoked for pressure and quadratic interpolation
for velocity over the �nite elements. The algorithm follows closely our previously published
work [11, 12]. Here, the generalized Newtonian �uid description is invoked to describe the
viscous properties of the material, according to a Carreau–Yasuda model. This model supports
shear-thinning properties and is represented through the viscosity function �(�̇) as

�(�̇)=
�0 − �∞
1 + (��̇)m

+ �∞ (5)

The particular material parameters chosen in the present study are �0 = 1:05 Pas, �∞=0:001
Pa s, �=0:083 s and m=0:62. �0 is a limiting viscosity at low shear rates, and �∞ is an
asymptotic value of viscosity at large shear rates (second Newtonian plateau); �̇ is the shear-
rate, m is a power-law index and � is a material constant. This model has been selected
based on the rheological characterization of dough samples and some model �uids, namely,
1% CMC, 2% CMC, 3% CMC and 4% CMC [15]. These materials are observed to be shear-
thinning and may be �tted to the Carreau–Yasuda model. There is a need for these model-
�uids, so that translucency would allow for validation via �ow visualization (see below).
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Matching on rheological properties with dough samples was ensured and particularly so in
shear. In the present study, the �ow type (full-�lled vessels) is heavily shear-dominated and
since no free-surfaces are involved, the interfacial �uid-solid boundary e�ects are overriden
(no wetting=peeling [16]). As such, under the current context, extensional in�uences are minor,
hence justifying the choice of model.
The Taylor–Galerkin algorithm has three fractional-stages per time-step as follows:
Stage 1: From initial velocity and pressure �elds, non-divergence-free Un+1=2 and U ∗ �elds

are calculated via a two-step predictor–corrector procedure. The corresponding equations are
solved iteratively by a Jacobi method.
Stage 2: Using U ∗, calculate the pressure di�erence (pn+1 − pn) via a Poisson equation,

applying a Choleski method of solution.
Stage 3: Using U ∗ and pressure di�erence (pn+1 − pn), determine the divergence-free

velocity �eld Un+1 by Jacobi iteration.
Adopting quadratic and linear interpolations, U (x; t) and p(x; t) may be expressed as

U (x; t)=Uj(t)�j(x); p(x; t)=pj(t) j(x) (6)

The equations in fully discrete form may be represented in the following notation:
Stage 1a:(

2Re
�t

M +
1
2
Su

)
(Un+1=2 −Un)= (−SuU − ReN (U )U + Ltp+ �iF)n (7)

Stage 1b:(
Re
�t

M +
1
2
Su

)
(U ∗ −Un)= (−SuU + Ltp+ �iF)n − ReN (U )Un+1=2 (8)

Stage 2:

K(pn+1 − pn)=
−2
�t

LU ∗ (9)

Stage 3:

Re
�t

M (Un+1 −U ∗)=
1
2
Lt(pn+1 − pn) (10)

where Un, Un+1, pn and pn+1 are nodal vectors of velocity and pressure at tn and tn+1,
respectively; U ∗ is an intermediate nodal velocity vector introduced in step 1b; M , Su, N (U ),
K and L are mass matrix, momentum di�usion matrix, convection matrix, pressure sti�ness
matrix and divergence pressure gradient matrix, respectively. The detail on the above matrices
in an (r; �; z) co-ordinate system is given as:

Mij=
∫
�
�i�j d� (11)

Su =



S11 S12 S13

S21 S22 S23

S31 S32 S33


 (12)
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(S11)ij = �
∫
�

(
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+
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(S12)ij = (S21)T =�
∫
�

(−1
r2

@�i

@�
�j +

1
r
@�i

@�
@�j

@r
+
2
r2

�i
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)
d� (14)

(S13)ij = (S31)T =�
∫
�

(
@�i

@z
@�j

@r

)
d� (15)

(S22)ij = �
∫
�

(
2
r2

@�i
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@�j
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�j +
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)
d� (16)

(S23)ij = (S32)T =�
∫
�

(
1
r
@�i

@z
@�j

@�

)
d� (17)

(S33)ij = �
∫
�

(
@�i

@r
@�j

@r
+
1
r2

@�i

@�
@�j

@�
+ 2

@�i
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@�j
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d� (18)

L= (L1; L2; L3) (19)

Lr =
∫
�

(
�i

r
+

@�i

@r

)
 j d �� (20)

L� =
∫
�

1
r
@�
@�

 j d �� (21)

Lz =
∫
�

@�i

@z
 j d� (22)

N (U )ij =
∫
�
�i�kUk∇�j d� (23)

(K)ij =
∫
�
∇ i∇ j d� (24)

where d�= r dr d� dz; i; j; k=1; 2; 3. After solving for velocities and pressure in the �ow �eld,
shear-rate (�̇), extension-rate (�̇), rate-of-work done (ẇ) and torque (Tq) are computed, using
the relationships:

�̇=2
√
I 2; �̇=

3I3
I2

; I2 =
1
2
trace(D2); I3 = det(D) (25)
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Here, I2 and I3 are the second and third invariants of the rate-of-strain tensor (D), where

D =
∇u+∇ut

2
=
1
2
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(26)

ẇ(t) =
∫
�
(� : ∇U ) d�=Pw (27)

(� : ∇U ) =
1
2
�
(
dUi

dXj
+
dUj

dXi

)2
= ẇ(t; x) (28)

Pw = Tq! (29)

Above, Pw is the power, � the stress tensor, U the velocity vector, � the �uid volume, t the
time and ! the rotational speed of the vessel per second. Localized rate-of-work done, ẇ(t; x),
may be interpreted as the integrand of Equation (27).

3. PROBLEM SPECIFICATION

Three types of stirring con�gurations are considered. With one stirrer, this may be placed in
either concentric or eccentric location with reference to the central (vertical) axis of the vessel.
A third instance is one with two stirrers. This is an analogue of the one-stirrer eccentric case,
where the second stirrer is positioned symmetrically opposite to the �rst across the vessel.
The �uid is driven by the outer vessel wall and �xed at the top of the vessel by a lid,
as illustrated in Figures 1(a)–1(b). The computer program developed, based on the above
mentioned algorithm, agrees with the analytical solution [17] for �ow in a rotating cylinder
with a concentric stirrer. Finite element solutions for velocity and pressure are found to be
within 0.1%. The concentric scenario was introduced in order to validate the computer code
against the background theory.
Finite element meshes of tetrahedral elements are employed in three-dimensions. To con-

struct such meshes, �rst each brick element is formed, which is then subdivided into six
tetrahedra. The height of the vessel is divided into �ve uniform layers. For the vessel with
one stirrer, the horizontal plane is divided into 120 quadrilaterals, see Figure 2(c). This leads
to 3600 tetrahedral elements, 5720 velocity nodes and 840 pressure nodes, resulting in a
total of 18 000 degrees of freedom. For the vessel with two stirrers, the horizontal plane
is divided into 280 quadrilaterals, see Figure 2(d). Correspondingly, this leads to 8400 tetra-
hedral elements, 13 145 velocity nodes and 1902 pressure nodes, and a total of 41 337 degrees
of freedom. The typical three-dimensional meshes and their two-dimensional cross-sectional
views for one and two-stirrer cases are shown in Figures 2(a)–2(d).
Initial conditions are taken either from rest for Newtonian low-Re �ows, or for inelastic

�uids as the equivalent Newtonian, steady-state solution. Continuation through Re may be

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1067–1079



Plate 1. Streamlines for one-stirrer geometry. (a) Re=2, max =1:60; (b) Re=4, max =1:52;
(c) Re=8, max =1:36 and (d) Re=16, max =1:10.

Plate 2. Streamlines for two-stirrer geometry. (a) Re=2, max =1:17; (b) Re=4, max =1:15;
(c) Re=8, max =1:12 and (d) Re=16, max =1:07.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43(9)



Plate 3. Experimental streaklines for one- and two-stirrer cases (mid-plane).
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Plate 4. Contours of P, �̇ and ẇ for single stirrer geometry. (a) −96:0¡P¡56:0;
(b) 0:96¡�̇¡98:0 and (c) 0:0¡ẇ¡0:041.

Plate 5. Contours of P, �̇ and ẇ for two-stirrer geometry. (a) −89:0¡P¡55:5;
(b) 0:68¡�̇¡93:6 and (c) 0:0¡ẇ¡0:037.

Plate 6. Contours of pressure in horizontal orientation. (a) −833:0¡P¡936:0;
(b) −946:8¡P¡322:31 and (c) −946:2¡P¡321:7.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43(9)



Plate 7. Contours of ẇ due to extension and shear for one- and two-stirrer geometries.
(a) 0:0¡ẇ(�)¡0:016; (b) 0:0¡ẇ(�)¡0:035; (c) 0:0¡ẇ(�)¡0:014 and (d) 0:0¡ẇ(�)¡0:037.

Plate 8. Contours of P, �̇, �̇ and ẇ for two-stirrer geometry, in 3D-mode. (a) −89:0¡P¡56:0;
(b) 0:7¡�̇¡94:0; (c) 0:0¡�̇¡1:71 and (d) 0:0¡ẇ¡0:037.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43(9)
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Stirrer

Lid

(a)                                                       (b)

Figure 1. Vessel with one and two stirrers.

(a)                                                                   (b)

(c)                                                                   (d)

Figure 2. Meshes for one- and two-stirrer problems.

employed subsequently for any particular material. Typically, a time step of �t=10−2 and
time-stepping convergence tolerance � of 10−6 are employed, where ‖	n+1−	n‖=1+‖	n+1‖¡�,
for solution nodal vector 	n at time step n.
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4. RESULTS AND DISCUSSION

Numerical simulations for the above two types of mixer designs have been conducted at
various speeds for inelastic materials. The �ndings re�ect close agreement against equivalent
experimental observations [15, 18, 20, 21]. Most of the results are plotted in a two-dimensional
cross-section at a mid-height to give some feel for the problem. For the two-stirrer case,
contours of pressure, shear-rate, extension-rate and rate-of-work done are also presented in
three-dimensional form, since some patterns, for example, extension-rates vary considerably
in the third dimension.
Plates 1 and 2 illustrate typical solution contours of streamline patterns for di�erent speeds,

namely, 12.5, 25, 50 and 100rpm. These are equivalent to Reynolds number settings of 2,4, 8
and 16 for one and two-stirrers, respectively. For the one-stirrer case, a central vortex evolves
in opposite juxtaposition to the stirrer at low speed (Re=2). The pattern of �ow is seen to
twist counter-clockwise away from the horizontal axis, through the centre of the stirrer as
speed of rotation (counter-clockwise) increases. With increase in speed, the pattern of �ow is
seen to contort and twist in an asymmetrical fashion. With the two-rod geometry, a pair of
vortices emerge at the centre, driven by separating �ow around each stirrer. Again, the �ow
pattern is seen to contort and twist in an asymmetrical fashion, in anti-clockwise direction as
the speed of rotation is increased. The maximum contour levels recorded occur at the centre
of the vortex and represent vortex intensity. It is noted that the vortex intensity decreases with
increase in speed, pushing the eddy outwards towards the vessel-wall. Streaklines obtained
from laser scatter �ow visualization data for equivalent Reynolds numbers, with one and two
stirrer cases are depicted in Plate 3. The change in vortex-centre positions are measured, both
in experiment and simulation, as speed increases from Re=2 to 16. A typical comparison
of vortex-centre azimuthal shift, from the horizontal reference line through vessel centre and
stirrers, is demonstrated in Table I. This data is for a two-stirrer scenario at 80% of the height
of the vessel. The agreement between experiment and prediction is observed to be O(1%).
Plates 4(a)–4(c) illustrate typical solution contours of pressure, shear-rate and localized

rate-of-work done, for the one-stirrer geometry, whereas Plates 5(a)–5(c) depict solution
contours of pressure, shear-rate and localized rate-of-work done for the two-stirrer problem
depicted in a two-dimensional slice. The positions where maximum and minimum occur are
indicated by ‘1’ and ‘0’, respectively. The corresponding values are provided in the �gure
legend in dimensional quantities. As the vessel rotates in the counter-clockwise direction, the
�uid gets compressed on entry to the constricted region between stirrer and vessel, and hence,
the maximum pressure arises in this region. When the �uid emerges at the exit from the gap
section, the �ow expands, and hence, the minimum pressure peaks here. With increasing

Table I. Comparison of vortex-centre azimuthal positions for two-stirrer case.

Reynolds number �exp �sim

Re=2 100 95
Re=4 110 106
Re=8 116 112
Re=16 125 122

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1067–1079
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speed, the pressure di�erential grows, showing greater minimum pressure on the backside
of the stirrer. This is a similar situation to that found for �ow response past cylinders in
a channel. Similar comments with respect to solution contours of pressure and its localized
characteristics, carry over from the one-stirrer instance to apply equally for the two-stirrer case.
For the two-stirrer instance, a noticeable new feature emerges. That is, the presence of the
second stirrer renders a symmetrical solution structure. So, for example, there is a replicated
pattern about each stirrer with respect to upstream and downstream (pre- and post-nip-gap)
�ow as seen in Plates 5 and 8.
Simulations are conducted with the axis of the mixer being horizontal, where body force

in the y direction is signi�cant. The pressure patterns di�er signi�cantly between horizontal-
and vertical-orientations. This may be explained through the fact that the body force acts
as a pseudo-pressure gradient, and in this manner, is linked to the pressure as illustrated in
Plates 6(a)–6(c). However, the �ow kinematics remain as in the vertical-orientation. For the
simple concentric scenario, the pressure contours in the vertical-orientations form concentric
circles around the stirrer, the maximum pressure on the outer vessel surface and minimum
around the stirrer. When the concentric geometry is in the horizontal-orientation, the pres-
sure contours are straight lines parallel to the horizontal central axis through the stirrer as
demonstrated in Plate 6(a). In the horizontal-orientation, the body force acts vertically down-
wards (in the Y direction) and hence the pressure tends to be maximum at the bottom part
of the geometry. When the stirrer is placed in eccentric position with respect to the axis of
the vessel, as seen in Plates 6(b) and 6(c), the maximum pressure peaks at the upper part
of the geometry. This is the region where the �uid experiences compression because of the
anti-clockwise direction of rotation of the vessel. The reverse scenario is observed when the
direction of rotation is changed from counter-clockwise to clockwise. In the non-concentric
cases, the �ow kinematics dominates the body force and hence, the maximum is observed in
the �ow zone prior to the stirrers where the �uid gets compressed and the minimum in the
region post-stirrer where it expands. Similar structure is observed in the two-stirrer instance,
with symmetry introduced about the stirrers.
In the two-dimensional horizontal slice shown in Plates 4(b) and 4(c), maximum values

of shear-rate and rate-of-work done are observed in the narrow region between the vessel
and the stirrer. Since the stirrer is stationary and the vessel is rotating, velocity gradients
peak around the stirrer, particularly in the constricted gap section between the stirrer and the
vessel wall. Hence, more shearing and stretching of the �uid occurs in this region and the
rate-of-work done peaks to a maximum there. In a qualitative sense, the total rate-of-work
can be segregated into shear and extension components, respectively, as depicted in Plates
7(a)–7(d) for the two geometries. That is, associating extension and shear aligned with the
orthogonal cylindrical coordinate system. From these �gures, it is apparent that the contours
of rate-of-work done due to shear concentrate at the centre of the narrow-gap between the
stirrer and the vessel, whereas the contours of rate-of-work done due to extension spread
around the stirrer. For the one-stirrer case, the extensional rate-of-work contribution peaks at
about one-half of that due to shear at entry to the narrow-gap between the stirrer and the
vessel, see Plates 7(a) and 7(c). In the two-stirrer instance, the extensional rate-of-work peak
is about one third of that due to shear. Hence, greater extensional work can be attributed to
the one-stirrer version and it is this portion that is perceived to maximize build-up of material
structure through kneading. The clear preference is therefore established of the mixer design
with an asymmetric stirrer option.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1067–1079



1076 K. S. SUJATHA AND M. F. WEBSTER

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20

Sh
ea

r-
ra

te
 (

1/
s)

Reynolds number

one stirrer
two stirrers

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

E
xt

en
si

on
-r

at
e 

(1
/s

)

Reynolds number

one stirrer
two stirrers

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20

R
at

e-
of

-w
or

k 
do

ne
 (

N
.m

/s
)

Reynolds number

one stirrer
two stirrers

0

50

100

150

200

250

300

350

0 5 10 15 20

Pr
es

su
re

 d
if

fe
re

nc
e 

(P
a)

Reynolds number

one stirrer
two stirrers

(a) (b)

(c) (d)

Figure 3. Variation of �̇, �̇, ẇ and P with Re for one and two-stirrer designs.

Plates 8(a)–8(d) illustrate solution contours of pressure, shear-rate, extension-rate and
localized rate-of-work done shown in three-dimensional mode. From Plate 8(b) and 8(d),
maximum shear-rate and rate-of-work done occur at the top periphery of the vessel, mainly
in the gap between the stirrer and the vessel. Since the top-lid is stationary and the vessel is
rotating, velocity gradients are high in this region and hence rate-of-work done peaks here.
From Plate 8(c), extension is deemed to occur at the �ow exit near the top and bottom-plates.
At the top-plate, extension-rate is higher at the �ow exit after the gap between the stirrer and
the vessel. As the �uid passes through the gap section, getting squeezed at the entry, expands
and stretches at the exit, showing high extension-rates. The stretching which occurs in the
vicinity of the stirrer, spreads further and expands over the entire �ow �eld as shown in
Plate 8(c). The stationary top-plate enhances stretching and thus extension-rates. Similarly at
the bottom-plate, high extension-rates occur in the region where the �uid emerges from the
gap and within a small region around the stirrer. The reason for high extension-rates around
the stirrer at the bottom-plate may be attributed to the stretching of the �uid at the contact
line between the stationary stirrer and moving bottom-plate. The magnitude of extension-rates
are negligibly small elsewhere.
Figures 3(a)–3(d) demonstrate the variation in maxima of shear-rate, extension-rate, rate-of-

work and pressure-di�erence versus Reynolds number for both one- and two-stirrer geometries,
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Figure 4. Variation of torque with time and speed.

Table II. Contrast between Newtonian and inelastic materials.

One-stirrer Two-stirrer

Field variables Newtonian Inelastic Newtonian Inelastic

�̇ 177 199 168 192
ẇ 0.192 0.168 0.172 0.156
Tq 4.32 4.06 5.61 5.38

to illustrate the e�ect of increasing speed. It is apparent that all variables increase with increase
in inertia. From these results, it is observed that the introduction of a second stirrer does not
alter the magnitude of the rates signi�cantly at low Reynolds numbers. However, as the
rotational speed increases, for example Re¿10, the di�erence in these quantities between
one- and two-stirrer geometries, increases as demonstrated in Figures 3(a), 3(c) and 3(d).
Figures 4(a) and 4(b) illustrate the variation of torque for one and two-stirrer cases. Figure

4(a) shows the transient variation at Re=8 (50 rpm), whilst Figure 4(b) represents steady-state
values at the various speed settings. Torque is a measure of an integrated quantity of rate-
of-work done in the whole �eld. As time progresses from a quiescent state, torque decreases
and reaches a constant value as a steady-state is approached. At the onset of motion (t=0),
torque is at a maximum due to �uid and stirrer resistance against the vessel motion. For an
equivalent speed, the magnitude of torque is 7% higher for the two-stirrer case, at a typical
speed setting of Re=8 (50 rpm). There is an increased resistance arising from the presence of
a second stirrer. Since the torque re�ects the complete �eld contributions of the rate-of-work
done, its magnitude is higher for the two-stirrer �ow, above that of the single stirrer case.
Similarly as with other variables, torque increases with increasing speed of vessel rotation.
With one and two-stirrer designs, Table II records the contrast between Newtonian and

inelastic materials for a typical trial run at a speed of 50 rpm (Re=8). Both trials provide
similar results. For an equivalent speed, shear-rate maxima are 20% higher for the inelastic
�uid due to shear-thinning. Torque also declines as shear-thinning rheology is introduced.
Local rate-of-work maxima and power reduce for inelastic above Newtonian �uids, being
dominated by viscous in�uence. An important observation is that one-stirrer designs lead to
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(a)                                                                                       (b)

Figure 5. Velocity vector plots for rotating stirrer motion.

enhanced local rate-of-work over two-stirrer alternatives (as much as 13% higher). This would
not be apparent from torque calibrations.
Finally, we attempt to relate this process to the actual industrial situation, where the stirrers

rotate and the vessel is stationary. This is achieved by translating the motion of the vessel
to that of the �eld. The resulting velocity vectors, at a low inertia setting of Re=2, for both
one and two-stirrer scenarios are presented in Figures 5(a) and 5(b). These patterns may be
contrasted against the results of Plates 1(a) and 2(a), respectively. The central vortices of the
alternative vessel-driven motion are now no longer apparent.

5. CONCLUSIONS

We have successfully demonstrated the use of a numerical �ow solver for non-Newtonian
�uids as a predictive tool for dough kneading. We have been able to provide physically
realistic simulations for these complex rotating �ows. The contrast between one- and two-
stirrer scenarios, and the changes in �ow pattern with speed, have been validated against
equivalent experimental �ndings. Two-stirrer solutions display certain aspects of symmetry,
above their one-stirrer counterparts. The shear-rates, pressures and rate-of-work done are
localized in extrema in the neighbourhood of the stirrers. Maxima in shear-rate correspond
to that in rate-of-work done at the narrowest part of the nip-gap between stirrer and ves-
sel. Extension-rates are maximum at �ow exit near the top and bottom-plates. The maximum
in local rate-of-work is higher for the single-stirrer, as opposed to the two-stirrer geometry.
However, the torque and power consumption are higher for the two-stirrer case. Increase of
vessel rotation speed, elevates inertia, twists vortex patterns and increases shear-rate, pressures,
rate-of-work done and torque. Greater extensional work is observed for the mixer with the
one-stirrer design. A comparative study between Newtonian and inelastic �uids yields higher
shear-rates and lower rate-of-work, torque and power for inelastic materials. The reverse
scenario to the vessel rotating demonstrates the actual industrial situation.
In related work [19], we go further and address part-�lled scenarios in two and three

dimensions and the phenomena associated with wetting-and-peeling boundary contact. There,
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an arbitrary Lagrangian–Eulerian method is used to deal with free-surfaces. Elsewhere [13, 14],
more complicated material representation is incorporated, so that systems are introduced which
more closely re�ect the properties of dough (viscoelastic).
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